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Abstract
The field emission of crystalline AAA graphite is studied within a simple analytical approach
taking account of the exact dispersion relation near the Fermi level. The emission current is
calculated for two crystal orientations with respect to the applied electric field. It is found that
the exponent of the Fowler–Nordheim equation remains the same while the preexponential
factor is markedly modified. For both field directions, the linear field dependence is found in
weak fields and the standard quadratic Fowler–Nordheim behavior takes place in strong fields.
A strong dependence of the emission current on the interlayer distance is observed. As an
illustration of the method, the known case of a single-walled carbon nanotube is considered.

1. Introduction

Different carbon-based structures are considered as promising
electrode materials for field emission (FE) cathodes. In
particular, the field emission properties of single-walled
(SWNTs) and multi-walled (MWNTs) carbon nanotubes [1]
as well as graphite films [2] are presently under intensive
experimental and theoretical investigations. In experiment,
many factors such as inhomogeneities at the cathode surface,
surface contamination (surface adsorbates and oxides), local
electric fields and barriers, the electronic structure of cathode,
etc can drastically change FE results [3]. In addition, these
factors vary from one experiment to another, thus markedly
complicating the theoretical description. Nevertheless, the
electronic characteristics of cathodes should be equally
manifested in different experiments. For this reason, the effect
of electronic structure on the emission features of cathodes
is of definite interest. For SWNTs this problem was studied
numerically in [4–6] by using an approach which can be called
a method of independent channels.

In this paper, we present a rather simple modification of
this method to study analytically the influence of the 3D band
structure on the field emission current (FEC) of crystalline
graphite. As an illustration, we consider the case of SWNTs
where our approach allows us to reproduce the FE results
obtained in [4]. As is well-known, the electronic structure
near the Fermi energy of the crystalline graphite markedly
depends on the weak interlayer interaction (see, e.g. [7–10]).

Accordingly, the FEC in this case should be sensitive to the
specific electronic structure. In order to show this, we consider
the simplest possible modification of graphite (hypothetical
AAA stacking) where the three-dimensional energy spectrum
was calculated analytically in [10]. Two possible orientations
of the applied electric field (along and normal to the graphite
layers) are of interest to us.

2. FEC of opened carbon SWNT

The emitted current density can be written as [3, 12]

j out = 2e

h3

∫
dpx

∫
dpy

∫
f (ε)υg D(ε, px , py) dpz. (1)

Here the field emission is directed along the z-axis, e is
the electric charge, h = 2π h̄ the Planck constant, ε the
energy, p momentum, f (ε) = [exp(ε/kT ) + 1]−1 the Fermi–
Dirac distribution function, D(ε, px , py) the transmission
probability of an electron through a potential barrier, and
υg = ∂ε/∂pz the group velocity. The integrals are over
the first Brillouin zone with account taken of the positivity
of υg. Notice that in most cases the use of infinite limits
in integrals is a good approximation. For parabolic bands
υg = pz/m, and this relation is widely used in deriving
the well-known Fowler–Nordheim equation. In the case
of carbon nanotubes, two important differences from the
generally accepted consideration should be taken into account.
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Figure 1. Selected coordinate axes for a rolled (left) and unrolled
(right) nanotube. ly is the circumference of the nanotube, lx is a
thickness of the graphite layer.

First, an open SWNT has a finite small radius which
results in quantization of momentum. In this case, the
corresponding integrals in (1) transform into sums. For
example, choosing the axes shown in figure 1 one has∫

f (pi) dpi = ∑
q f (q)h/ li where i = x, y, ly is the

circumference of the nanotube, and lx the thickness of the
graphite layer. For a SWNT there exists only a single layer
in the x-direction and, accordingly, there is exactly one term in
the sum for i = x . The number of terms for i = y depends on
the tube circumference ly .

Second, the energy near the Fermi level for a
single graphite layer (graphene) is approximated by ε =
±υF

√
p2

y + p2
z , where υF is the Fermi velocity [7–10]. The

electrons move in the yz plane, so that the energy does not
depend on px . Since py is quantized, the energy ε(py, pz)

turns out to be divided into a set of channels with ε(h̄q, pz) =
εq(pz) where q takes integer values. Therefore, the current
density (1) takes the form

j out = 2e

hlxly

∑
q

∫
f (εq)D(εq) dεq . (2)

As is known, the dispersion relation for carbon nanotubes
depends on their chirality (see, e.g. [11]). For a chiral vector
(m, n) it can be written as

εq = ±υF

[(
h

(m − n)/3 + q

ly

)2

+ p2
z

]1/2

. (3)

Generally, there are two symmetric curves with a gap ε
q
g =

2υFh((m − n)/3 + q)/ ly . However, at certain values of m,
n, and q the gap turns out to be zero and one gets the linear
dispersion relation. Therefore, at fixed q there exists one
metallic branch and a set of semiconducting branches for a
SWNT with a given chirality.

As stated above, the condition υg > 0 imposes restrictions
on the limits of the integral in equation (2). In addition,
two approximations will be used. First, we consider the
zero-temperature limit when the Fermi–Dirac distribution
becomes the step function. Second, we suggest that the
transmission probability is given by the WKB approximation
(see, e.g. [12, 13]) in the form

D(ε) = exp

{
− ζ

F
[φ3/2υ(y) − 3/2φ1/2εt (y)]

}
= b exp(dε)

(4)

Figure 2. Current densities versus the diameter of CNTs at the
applied field F = 8 × 109 V m−1. The parameter set is φ = 4.7 eV,
υF = 0.83 × 106 m s−1, a = 2.46 Å, ζ = 6.83 × 109 eV−1/2 m−1.

where ζ = 8π(2m0)
1/2/3eh, y = (eF/4πε0)

1/2/φ, F
is the electric field, φ the work function, ε0 the dielectric
constant, and we denoted b = exp

(−ζφ3/2υ(y)/F
)

and d =
3ζφ1/2t (y)/2F for convenience. The functions υ(y) and t (y)

describe a deviation of the barrier from the triangle form due
to image effects and can be approximated by [14]

υ(y) ≈ 1 − y1.69, t (y) ≈ 1 + 0.127y1.69. (5)

Now we are able to calculate the qth term in the sum (2). For
the metallic branch, the integration in (2) spreads from −∞
to 0. One obtains

j0 = 4

3

e

hlxly

F

ζφ1/2t (y)
exp

(
− ζ

F
φ3/2υ(y)

)
= 2eb

hlxlyd
. (6)

For semiconducting branches, the range of integration in
equation (2) is (−∞, −ε

q
g/2) and

jq = j0 exp

(
−3

2

ζφ1/2t (y)

F

ε
q
g

2

)
= j0 exp

(
−d

ε
q
g

2

)
. (7)

Notice that the dispersion relation enters equation (7) only
through the gap. This agrees with the well-known fact that
the group velocity and the density of states are canceled in the
one-dimensional case [12].

The sum over all branches in equation (2) gives the total
FEC. Figure 2 shows the calculated emission current density,
which is a current divided by the circumference of a nanotube.
For (m, n) SWNTs the circumference is defined as ly =
a
√

m2 + mn + n2 with a being the lattice constant. In fact,
the main contribution to the sum in (2) comes from the first few
terms corresponding to branches close to the Fermi level. This
is due to the exponential dependence of the FEC on the gap.
For metallic nanotubes, the leading term is j0, so that j out

met ∼
1/ ly . In the case of semiconducting nanotubes, the leading
contribution comes from the qth term with the smaller gap in
equation (7) and, therefore, j out

sem ∼ 1/[ly exp(1/ ly)]. A similar
behavior was found numerically in [4]. Moreover, comparing
our results in figure 2 with the exact numerical calculations
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Figure 3. The location of graphite layers with respect to the electric
field. The emission occurs in the direction opposite to the electric
field.

in [4] one can find out a good qualitative agreement. Notice
that the quantitative difference is also not great and varies
from a few to ten per cent depending on the diameter of
the nanotube. In comparison with [4] our points in figure 2
are situated slightly lower for metallic nanotubes and slightly
higher for semiconducting nanotubes. This difference can be
explained by at least two reasons. First, we have used the
simplified expression for the tunneling probability in (4) where
the image effects were approximated in a standard way (see,
e.g. [12, 13]). Second, as distinct from [4] we consider the
zero-temperature limit.

3. FEC of crystalline graphite

3.1. Noninteracting layers

In this section, we study the case of noninteracting graphite
layers. The layers are oriented as shown in figure 3. To
calculate the FEC we will use the method of independent
channels described in the previous section. Namely, let us
consider the 2D graphite lattice with the Born–von Karman
boundary conditions applied in the y-direction. This gives the
natural quantization conditions. For layers of a large (infinite)
size the sum in (2) can be replaced by the integral

∑
q jq =

(ly/h)
∫

j (py) dpy, so that finally one obtains

j = 8

9

q

h2lx

F2

ζ 2φυFt2(y)
exp

(
− ζ

F
φ3/2υ(y)

)
, (8)

where the relation εg(py) = 2υF|py| is taken into account. It
is interesting to mention that this result is very similar to the
Fowler–Nordheim formula

j FN = 16

9

qm0π

h3

F2

ζ 2φt2(y)
exp

(
− ζ

F
φ3/2υ(y)

)
. (9)

Indeed, the exponents are exactly the same and the
preexponential factors differ only slightly. What is important
is that the F2-dependence is equal in both cases. For the
interlayer distance lx = 3.34 Å one can estimate j/j FN =
h/(2υFπm0lx) ∼ 0.4.

3.2. AAA stacking

Generally, three possible configurations of crystalline graphite
are known: AB AB . . . stacking sequence of hexagonal layers

Figure 4. Fermi surface of the simple hexagonal graphite. The
central pocket corresponds to the hole region, two half pockets
correspond to the electron region. The solid lines show five possible
types of channels for emitting electrons.

(Bernal structure), rhombohedral ABC ABC . . . stacking, and
AAA . . . stacking when layers of carbon atoms are located
directly on top of each other [10]. The AAA stacking is called
hypothetical because it has not been observed yet in crystalline
graphite. However, this configuration is expected in disordered
or pregraphitic carbon [16]. In this paper, we consider the
model of AAA stacking which is the simplest one and allows
us to study the effect of interlayer interaction on the emission
properties analytically.

Let us consider the interacting graphite layers oriented
parallel to the electric field (see figure 3). In the framework of
the AAA model, the interaction modifies the 3D band structure
near the Fermi level which can be written in a simple analytical
form [10]

ε = 2α1 cos

(
cpx

h̄

)
± α0

√
3a

2h̄

√
p2

y + p2
z . (10)

Here the α0 parameter represents the interaction between first-
neighboring atoms in a layer, α1 is related to the interaction
between two atoms of the same projection on the yz plane,
from two neighboring layers, and c is the interlayer spacing.
The influence of other parameters α2 and α3 introduced in [10]
is suggested to be negligible and only linear terms in the k · p
perturbation expansion are taken into account. Actually, the
analysis in [10] shows that the maximum effect of the next-
to-leading term (breaking the cylindrical symmetry) is of the
order of five per cent. The upper sign in (10) corresponds to the
conduction band, and the lower sign corresponds to the valence
band, α0

√
3a/2h̄ = υF.

In compliance with (10), figure 4 represents the Fermi
surface of the AAA graphite. The Fermi surface is composed
of a hole pocket (the valence band, ‘minus’ sign in (10)) and
two half pockets of electrons (‘plus’ sign in (10)). In our case,
the emission occurs along the z-axis. Generally, the possible
values of the momentum of emitting electrons with respect to
the Fermi surface can be collected into five different groups.
We call them independent channels. Solid lines in figure 4
indicate five possible types of independent channels: (1) for an
intermediate electron–hole region, (2, 3) for holes, and (4, 5)
for electrons. For finite-size layers, quantization of momentum
in the xy plane occurs. In this case, the spectrum is written as

εi j = 2α1 cos(cpi
x/h̄) ± υF

√
(p j

y)2 + p2
z , (11)
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Figure 5. One-dimensional dispersion relations for the hole region.

where i, j are integers, and pi
x lies in the region

(−π h̄/c, π h̄/c). The total FEC is a sum of all channels. Let
us consider these contributions separately.

3.2.1. Hole region. The hole region is defined as −π h̄/2c <

pi
x < π h̄/2c. As is shown in figure 4 there are two

types of channels for the hole region and channel 1 can be
considered as an intermediate case. Figure 5 shows all possible
one-dimensional dispersion relations for this case. Channel
3 crosses the Fermi surface at two points while channel 2
does not cross the Fermi surface. For each channel j i j =
(2e/hlxly)

∫
f (εi j )D(εi j) dεi j . The integration here is over

the occupied states, and 	i j is the distance from the Fermi
level to the extremum point of the branch (see figure 5). For
channel 1 	i j = 0, and the current density is found to be
equal to j0. Notice that there are only two channels of this
type. Analytically, channel 2 is defined as |p j

y | > ηi , where
ηi = 2α1 cos(cpi

x/h̄)/υF. For this channel one obtains

j i j = j0 exp(−d	i j). (12)

Here 	i j takes the form 	i j = υF|p j
y |−2α1 cos(cpi

x/h̄), which
can be easily found from (11). Replacing the sum

∑
i j j i j by

the integral one gets

j ‖
2 = 2lxly

h2

∫ h/4c

−h/4c
dpx

∫ ∞

η

j0 exp[−d	(px, py)] dpy

= 2eb

h2d2cυF
. (13)

For channel 3 one has |p j
y | < ηi and j i j = j0. As before, one

obtains

j ‖
3 = 2lx ly

h2

∫ h/4c

−h/4c
dpx

∫ η

0
j0 dpy = 8α1eb

πh2dcυF
. (14)

3.2.2. Electron region. The electron region is defined as
−π h̄/c < pi

x < −π h̄/2c and π h̄/2c < pi
x < π h̄/c

or, taking into account a periodicity of the Brillouin zone,
π h̄/2c < pi

x < 3π h̄/2c. There are two kinds of channels
in the electron region with spectra shown in figure 6. Channel
4 does not cross the Fermi surface and, therefore, the current
density turns out to be zero. For channel 5 one has |p j

y | < |ηi |.
This channel contains occupied states below the Fermi level
and, hence, there is a nonzero contribution to the FEC. One
obtains

j i j = j0[1 − exp(−d	i j)], (15)

Figure 6. One-dimensional dispersion relations for the electron
region.

where 	i j = 2α1| cos(cpi
x/h̄)| − υF|p j

y | in accordance with
equation (11). Finally,

j ‖
5 = 2lx ly

h2

∫ 3h/4c

h/4c
dpx

∫ η

0
j0{1 − exp[−d	(px, py)]} dpy

= 2eb[4dα1/π + (
I0(2dα1) − L0(2dα1) − 1

)]
d2cυFh2

, (16)

where L0(x) is the modified Struve function, and I0(x) is the
modified Bessel function.

3.2.3. Resulting FEC. The total current density is found to be

j ‖
tot =

5∑
i=2

j ‖
i = 2eb[8dα1/π + I0(2dα1) − L0(2dα1)]

h2d2cυF
.

(17)
Notice that j ‖

tot reduces to (8) for α1 = 0.

3.3. AAA stacking: perpendicular electric field

Let us consider interacting graphite layers placed normally to
the electric field (see figure 3). This situation differs markedly

from the previous case. Let us denote ρ =
√

p2
y + p2

z

in the dispersion relation in equation (10). Quantization of
momentum results in the replacement ρ → ρi j . There are only
two types of channels in this case (see figure 7). As before, let
us consider them separately.

3.3.1. Hole region. The hole region is defined by −π h̄/2c <

px < π h̄/2c. There are two kinds of channels in the hole
region with spectra shown in figure 8. Channel 1 is defined by
ρi j < 2α1/υF. The current density reads

j i j = j0[1 − exp(−d	i j)], (18)

where 	i j = υFρ
i j . One obtains

j⊥
1 = lylz

h2

∫ 2α1/υF

0
j0{1 − exp[−d	(ρ)]}2πρ dρ

= 4πeb

(dh)3υ2
F

(
(2α1d)2

2
− 1 + exp(−2α1d)(2α1d + 1)

)
.

(19)
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Figure 7. Fermi surface of simple hexagonal graphite. The solid
lines show two possible types of channels for electrons emitted in the
x-direction.

Figure 8. One-dimensional dispersion relations for the hole region.

Channel 2 is defined by ρi j > 2α1/υF, and

j i j = j0(exp(2α1d) − 1) exp(−d	i j). (20)

Finally,

j⊥
2 = lylz

h2

∫ 2α1/υF

0
j0(exp(2α1d) − 1) exp[−d	(ρ)]2πρ dρ

= 4πeb(2α1d + 1)

(dh)3υ2
F

exp(−2α1d)(exp(2α1d) − 1). (21)

3.3.2. Electron region. In the electron region π h̄/2c < px <

3π h̄/2c. There are also two kinds of channels in this region
with spectra shown in figure 9. Channel 3 is equivalent to
channel 5 in the previous section. It is defined by ρi j <

2α1/υF. The current is

j i j = j0[1 − exp(−d	i j)]. (22)

Here 	i j = 2α1 − υFρ
i j (see figure 9 and equation (11)). In

this case,

j⊥
4 = lylz

h2

∫ 2α1/υF

0
j0{1 − exp[−d	(ρ)]}2πρ dρ

= 4πeb

(dh)3υ2
F

(
(2α1d)2

2
− 2α1d + exp(2α1d) − 1

)
. (23)

Figure 9. One-dimensional dispersion relations for the electron
region.

Figure 10. The current densities versus electric field for graphite
layers placed parallel ( j ‖) and normal ( j⊥) to the electric field with
α1 = 0.4 eV, φ = 5 eV. For comparison the Fowler–Nordheim curve
( j FN) is shown.

Channel 4 is defined by ρi j > 2α1/υF. Since it does not cross
the Fermi surface the current density is equal to zero.

3.3.3. Resulting FEC. The total current density is the sum of
all channels

j⊥
tot = 4πeb

(dh)3υ2
F

[
(2α1d)2 + 1 − exp(−2α1d)

]
. (24)

4. Discussion

Figure 10 shows the calculated current densities as functions
of the applied electric field. For comparison, the Fowler–
Nordheim curve is drawn. The most important difference
comes from preexponential factors. As is known, the Fowler–
Nordheim theory gives j FN ∼ F2b at all F . In accordance
with equation (17) the preexponential factor has a different
field dependence. At small F one obtains j ‖ ∼ Fb. When F
increases (which means 2α1d → 0) the current density comes
to j ‖ ∼ F2b and, finally, j ‖/j FN → 0.4 as was shown in
section 3.1. Indeed, at large x the difference I0(x) − L0(x)

tends to 2/(πx) while at small x it tends to 1 [15]. This
is clearly seen in figure 11 where the comparative curves are
demonstrated. For j⊥ we have a similar behavior. According

5
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Figure 11. Comparative curves for the current densities versus the
electric field characterizing the role of the preexponential factor.
j ‖/j⊥ is almost a constant in the considered interval of F .

Figure 12. Reduced current density versus relative interlayer
distance x = (c − c∗)/c, c = 3.34 Å for two field orientations.
j⊥ is markedly more sensitive to x than j ‖.

to equation (24), j⊥ ∼ α2
1 Fb at small F and j⊥ ∼ α1 F2b at

large F , so that j⊥/j FN tends to a constant with increasing
F . One can conclude that the bigger the electric field the
lesser is the role of the interlayer interaction. The anisotropy of
the emission from the 3D graphite is also shown in figure 11.
As is seen, j ‖/j⊥ ∼ 2.7, which is almost a constant in the
considered interval of F . Therefore, we obtain a three times
increase in FEC when graphite layers are oriented in parallel
with the electric field.

It is interesting to discuss the dependence of FEC from the
parameter α1 which characterizes the interlayer interaction. It
was found in [16] that this parameter is very sensitive to the
interlayer distance. Based on their results one can approximate

α1 = 18x2 − 0.4, (25)

where x = (c − c∗)/c and α1 is measured in eV. As is seen
from figure 12, there is a strong dependence of the FEC on
the interlayer distance. The less is this distance the more is
the emission current. This is valid for both orientations. It

would be interesting to check this finding in experiments with
graphite crystals under pressure. Notice that this result follows
from the fact that the DOS at the Fermi level (which is of
most importance in the emission process) is determined by α1

(see [10]). As is seen from figure 12, j⊥ is more sensitive to
x than j ‖. Moreover, for α1 → 0 one has j⊥ → 0, which
follows from the fact that the movement of electrons between
layers is suppressed in the absence of the interlayer interaction.

5. Conclusion

In conclusion, we have found that the band structure of the
3D graphite has a marked impact on the field emission current.
Experimentally, the field emission from carbon materials was
studied in [2]. Unfortunately, the polycrystalline carbon
films used in experiment cannot be properly described in the
framework of our approach because for this purpose we have
to consider a mixture between different crystalline structures.
In fact, the Fermi surface of the AB AB structure of graphite
is found to be much more complex and, in particular, it does
not possess cylindrical symmetry (see, e.g. [9, 16]). In this
case, our approach should be markedly modified. Besides,
many additional factors such as the presence of a diamond-
like phase on the surface of samples and the absence of any
information about the local electric fields do not allow us to
clarify the role of the band structure in this case. Therefore,
specific emission experiments with graphite single crystals at
different orientations of the electric field would be of evident
interest.
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